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A method of using molecular symmetry in MO calculations is described. The method 
consists of determining the point group of the molecule, and establishing equivalence 
tables for atoms equivalent under various applicable symmetry operations. Ways of 
setting up symmetry orbitals are outlined. The determination of the symmetry species of 
molecular orbitals, of configurations and states of molecules are described. 

Over the past several years we have developed a general, automatic treatment of 
molecular symmetry for MO calculations. Although developed within a single 
system, as subroutines of a single computer program (CNDO/S) [l], we feel these 
methods are sufficiently general to be adaptable to any program, and to be useful 
in many other contexts. Consequently, we offer herewith a description of this 
system. 

The only input required to the program, and particular to the symmetry handling 
routines are the coordinates and the atomic numbers of the atoms [I]. At the time 
that the coordinate cards are read, each atom is assigned an order number (i.e., the 
atoms are numbered in the order of the appearance of the coordinate cards). To 
provide a record, the coordinates, with atomic and order numbers, are printed out. 
In addition, a “diagram” of the molecule is “drawn” by the high speed printer by 
projecting the molecule on the coordinate plane in which its dimensions are 
maximal. 

The first step is a translation of the origin to the center of mass of the system. 
Next, a coordinate transformation to the principal axis system is perf0rmed.l For 
this purpose, the moment of inertia matrix (MIM) is calculated and diagonalized.2 

* Present address, Department of Chemistry, University of Illinois, Urbana, Illinois. 
1 Only if the molecule under consideration is an ion (i.e., carries a net charge), is this step modi- 

fied; in this case the origin transformation is made to the centroid of positive charge. This is done 
so that a calculation of the dipole moment as & (erJ, which is origin independent for neutral 
systems, retains its meaning for charged ones. 

2 Since this is a 3 x 3 matrix, it may, of course, be solved in any other convenient way. The 
presence of diagonalization routines in most MO programs makes diagonalization convenient. 
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At this point, three cases which require distinct handling become distinguishable: 
the asymmetric, the symmetric, and the spherical top, characterized by no degene- 
racies in the eigenvalues of the MIM, one degenerate pair and one distinct value, 
and three degenerate values, respectively. The treatments of these cases will be 
discussed further in the next section. The eigenvectors of the MIM can now serve 
directly as a transformation matrix, rotating the coordinates into the principal 
axis system. This is always done for asymmetric top molecules. However, for 
symmetric and spherical tops, where two or all three eigenvectors are arbitrary, 
nothing is gained; on the contrary, matters are often obscured if this rotation is 
carried out. For the symmetric top, a rotation of the distinct axis into the z-axis is 
performed; no other rotations are performed, on the assumption that the orienta- 
tion of the molecule chosen by the investigator is likely to be more useful than the 
arbitrary orientation achieved by the program. 

DETERMINATION OF POINT GROUP AND EQUIVALENCE TABLES 

After the molecule is properly oriented, we proceed to the determination of the 
point group, and at the same time accumulate information subsequently needed 
about the equivalence of atoms. This information is collected in two tables for 
each symmetry element, the ON table and the BY table, which are discussed in more 
detail in a later section. 

Asymmetric Tops 

Only eight point groups need to be considered for asymmetric tops: C, , C, , 
c, 3 ci , Cm , Cm, 4, and Dm . All symmetry operations are binary, i.e., relate 
at most two atoms. Since we have converted our coordinate system to a principal 
axis system, all symmetry axes coincide with the coordinate axes, all planes of 
symmetry coincide with the planes defined by two coordinate axes, and the center 
of symmetry (if one exists) lies at the origin.3 At most, three symmetry elements are 
needed to define the point group. The ones we have chosen are indicated in Table I. 

We begin by examining the xy-plane. We scan all atoms, and place into an ON 
table the order number of any atoms lying in this plane (i.e., for which 
z = 0 i .Ol A). For any atom which does not lie on the plane, we scan all other 
atoms to find one for which xi = xi , yi = yj and za = -Zj , all within .Ol A. For 
safety, one may further verify that the atomic numbers of the equivalently located 
atoms are equal, although we have chosen to omit this test since it seems highly 
improbable to find unlike atoms, in pairs, at appropriate coordinates. Once one 
corresponding atom has been found, the scan is terminated since it would require 

3 This holds even for charged molecules since the centroid of positive charge must coincide 
with the center of gravity if a center of symmetry exists. 
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TABLE I 

The Symmetry Elements Chosen to Define the Various 
Point Groups of Asymmetric Top Moleculesa 

Cl c2 C8 Ci 

%v J J (A) J 
%. J J (4 J 

%s J J (4 J 

G” J A J 
G= 
i J J B 

W4 

J A J A 
A J J A 
A J J A 

A 
A 

B 

6 Means element checked, letters A through C refer to the format of the equivalence tables and 
indicate symmetry elements used to classify the molecule. A letter in parentheses indicates that 
one, but only one, of the elements is present. 

coincident atoms to find a second match; as a check of coordinates this seems 
expensive and unreliable, hence it is not done. When a match has been found, the 
pair of atoms is inscribed into the BY table. 

If we encounter an atom which lies neither on the plane, nor has a matching 
partner, the element (in this case the xy-plane) is rejected as a symmetry element, 
and we proceed to the next plane. In this manner all three planes, xy, xz and yz are 
checked. If all three are planes of symmetry, the molecule belongs to D2,, ; if two 
(xz and yz) are, it belongs to CZV , and the determination is complete. If only one 
plane was a symmetry plane, and this was not xy, the molecule transforms as C, ; 
if the plane was xy, we next check for a center. 

All atoms i are checked for the presence of a partner j at xj = -Xi , yj = -yi 
and zj = -zi ; if one is found, the order numbers of atoms i and j are entered into 
a BY table. If no partner is found, we check whether the atom lies at the origin; if 
so, its order number is stored in an ON table. The first atom we encounter which 
does not have an equivalent partner, nor lies at the origin, indicates that the mole- 
cule has no center of symmetry. If a center of symmetry is found in this manner 
(after uZV had been established), the molecule belongs to point group C,, , if no 
center is found, the assignment is C, . 

If no plane of symmetry was found, we test the z-axis to determine if it is a 2-fold 
axis (xi = yi = 0 & .Ol A for atoms on the axis, xi = -xj , yi = -yi , zi = zj 
within .Ol A for related pairs). If the z-axis is a symmetry axis, we check the y-axis 
(or x-axis) to distinguish C, and D, ; if the z-axis is not an axis we test for a center 
of symmetry to distinguish C, and C, . This procedure uniquely determines the 
point group of any asymmetric top molecule. 
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Symmetric tops are slightly more difficult, since we have to determine the order 
of the unique axis, which has been made to coincide with the z-axis by the principal 
axis transformation. We deal here with several groups of point groups; C, , C,, , 
C D2, , D, , DPh , Dsd and S,, , with all values ofp > 2. 

To proceed to the determination of p, we scan all atoms, collecting into an ON 
table the order numbers of all atoms lying on the z-axis (i.e., xi = yi = 0 -f .Ol A). 
For all atoms i not lying on the axis, we calculate the distance pi = (xi” + y#iz 
from the z-axis. For each such atom i we now find all other atoms, j, k,..., which 
have the same values of z and p: 

zi = zj = zlc = . . . . Within .Ol A, 
pi = pj = pk = . . . . Within .Ol A. 

Unlike in the case of the asymmetric top, here we verify that the atomic numbers 
match. Atoms found in this way to be related by the z-axis are entered into a BY 
table. Since we know that the z-axis is a p-fold symmetry axis, at the end of this 
procedure all atoms must have been entered in the ON table, or be a member of a 
group in the BY table. Next we must ascertain that atoms in each group are truly 
equivalent under C, . To do so let us define the angle aii which the radius vectors pc 
and pj from the z-axis to atoms i and j subtend at the z-axis. A necessary condition4 
for equivalence is that the angle aij between all nearest neighbors be the same. 
Calculation of the distance rii (or its square) between the pair of atoms i and j is 
equivalent to determination of the angle (and easier). Thus, we calculate rfj from 
each atom i to each atom j in the group, search for the smallest value, and test if, 
for each atom i, there are two (and just two) rfj which have this minimum value. If 
this condition is fulfilled, the group may be accepted as a group of equivalent 
atoms; if the condition is not fulfilled, we check equally with the second smallest 
distance (and in case of failure, successively larger distances). If the second smallest 
distance appears twice for each atom, we have two equivalent sets at the same 
value of z. 

We thus have assigned all atoms which do not lie on the axis to groups. Each 
group should number p, or a small integral multiple of p atoms. We shall now 
assume that the number of atoms in the group with the lowest number is just p and 
thus that the z-axis is a p-fold axis.5 We verify that the number in the other groups 

4 Although this condition is not mathematically sufficient, it seems extremely improbable that 
we shall ever treat a molecule in which this insufficiency matters. See also footnote 5 below. 

5 We can conceive of hypothetical molecules in which we encounter only groups with various 
multiples of p but not with p itself; e.g. a sandwich compound of benzene, a central atom, and a 
planar cyclononatetraenyl radical would have a 3-fold axis, and equivalent groups of 6c’s, 6H’s, 
9C’s and 9H’s. It seems, however, extremely improbable that such a molecule will ever be treated, 
and in the programs we have made no provision for this eventuality. 
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are either p, or a small multiple of (2 or 3 times) p. Since we have previously deter- 
mined that the molecule is a symmetric top, we expect this procedure to be success- 
ful in determining the value of p, with a value of p > 2. Should the value of p 
obtained in this way be two, we still have the possibility of point groups D,, or S, . 
To check for this possibility we test for a S, axis. 

In order to test for the presence of an S, axis, we rotate the molecule around the 
z-axis until one of the atoms, i, in the twofold equivalent groups lies in the xz-plane 
(if it does not already lie there). We then check for the presence of two other atoms, 
j and k, with zj = zg = -zi , xj = xk = yi = 0, yj = -yk = xi, all within 
0.01 A. We continue this process for at least one atom in each group. If all these 
tests are successful, a S, axis is established, and the molecule belongs to either 
Dzd or S, . The two cases are readily distinguished by rotating the molecule again 
about the z-axis, this time by 45”, and testing whether the x-axis is now a 2-fold 
axis (D& or not (S,,), in exactly the manner used for the asymmetric tops. 

In case we have not found a p-fold axis with p > 2, nor an S, axis, we must 
conclude that the degeneracy in the MIM was accidental, and treat the molecule as 
an asymmetric top. Here, the lack of a unique determination of the principal axes 
may cause difficulties, but a rotation of some (or a maximum number) of atoms 
into the xz-plane may help. If the number of atoms in the various groups established 
in the determination of p does not behave in the expected way, we print an error 
message, and abandon the problem, at least until the reason for the lack of expected 
behavior is established. 

Following determination of p in C, , we test for oh and u+, planes; the tests are 
quite analogous to those described for asymmetric top. A ah-plane must be the 
xy-plane, which is first tested. A cr, plane is a plane which includes the z-axis and 
one member of a group of p atoms. If none of these originally lay in the xz-plane, 
we have found it convenient to further rotate the molecule around the z-axis to 
place an atom into this plane. A test for a single a, plane, and later for a single ud 
plane and C,(d) axis suffices, since the C, axis generates the remainder of these 
elements from the first one. At this point Dph is uniquely identified by the presence 
of all three symmetry elements, (C, , (Jh and u,), C,, by C, and u, ; C,, by C, and 
Uh * 

If neither uh nor u, was present, we proceed to test for a diagonal axis (C,(a)), 
which is an axis normal to the z-axis and bisecting the angle between a pair of 
adjacent atoms of a p-fold group. This test is again most conveniently made by 
rotating the molecule around the z-axis until the desired axis coincides with the 
x-axis. If a C,(d) axis is found, the molecule belongs to point group D, or DBd , 
which are distinguished by testing for a Us plane. This would be the xz-plane in the 
orientation of the molecule used to test for the C,(6) axis. If ud is present, we have 
D 9d , if absent, D, . 

If no elements of symmetry beyond C, have been found the molecule transforms 
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as C, or S,, . The decision is readily made by testing for an S,, axis by comparing 
each group of p atoms at a position zi # 0 with a corresponding group at -zi , 
and verifying that the groups are rotated relative to one another around the-z-axis 
by an angle of 242~. 

As for the asymmetric top, ON and BY tables are created for each symmetry 
element present. The maximum number of required symmetry elements is still 
three, of which one is the p-fold axis. The sequence of operations required in the 
case of each of the point groups of symmetric tops is indicated in Table II. 

TABLE II 

The Symmetry Elements Chosen to Define the 
Point Group of Symmetric Top Molecules4 

CP c PY c Dh D, D Dd Dllh s 20 

c, C C C C C C C 
ali J J A J J A J 

b 

l&y 
J A J J J A J 
J A A J 

%c J A 
s 29 J C 

a Cf. Footnote to Table I. 
b Through an atom. 
c Halfway between atoms. 

Spherical tops are even more complicated, since now we must find 3,4 or 5 fold 
axes without the benefit of a principal axis transformation. First, a special equiv- 
alence table is readily constructed by calculating the distance of all atoms from 
the center of gravity, and assuming equivalent all those having the same distance 
and atomic number. Again, for most commonly treated molecules, we may assume 
that all such atoms are equivalent, although hypothetical molecules are readily 
generated for which this is not the case. 

Next, the orders of the various axes must be determined. We have so far been 
unable to find a truly general recipe for this process. Probably sufficient for most 
cases is to test axes passing through any of a group of equivalent atoms and the 
center, and axes bisecting the angle between the radius vectors to pairs of nearest 
neighbor equivalent atoms. Once one such an axis is found, it is not difficult to gener- 
ate the other appropriate axes (three mutually perpendicular C4’s in the 0 groups, 
four tetrahedrally oriented C3)s in the 0 and T groups, and the C,‘s of the Zgroups), 
or to find the planes which will distinguish between T, Td and Th , between 0 and 
Oh , and between Z and I,, . Since we have not programmed this problem we shall 
not discuss it further. 
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USE OF THE EQUIVALENCE TABLES 

Having now determined the point group of the molecule and constructed 
equivalence tables for the atoms, we are in a position to apply this information in 
a number of different ways. It should be noted that, depending on the point group, 
a number of different equivalence tables are extant, and different formats may have 
to be used. As indicated, for each symmetry element found, we have two tables, 
ON and BY. The ON table gives the atoms that lie on the element, the BY tables 
the atoms that are related by the element. For twofold axes and planes, format A is 
used; it gives the number of atoms and the order numbers of each in the ON table, 
and the number of pairs of atoms, and, in successive words the order numbers of 
the members of the pair in the BY table. For the center, in a special format B, the 
ON table consists only of two words, a 1 or 0 depending on whether or not an 
atom lies on the center, and in a second word the order number of the atom on the 
center. The BY table has the A format. For axes of higher order the ON table has 
the A format, but the BY table, format C, contains the number of groups, the 
number in each group, and the order numbers of each group. Each pair (format A) 
or group (format C) is given only once, with order numbers in ascending order. 

Construction of Symmetry Orbitals and Transformation of Integral Tables 

The equivalence tables have all the information required to construct symmetry 
orbitals and the transformation matrices to transform integrals from an atomic 
orbital basis to a symmetry orbital basis. Although we have not chosen to make 
this transformation in our programs it is evident that the process is straightforward. 
The only additional information required is the behavior and relation of atomic 
orbitals under the symmetry transformations, information which we shall see below 
is readily obtained and already incorporated in later sections of our programs. 

Assignment of Symmetry Species to Molecular Orbitals. 

The equivalence tables, coupled with the atomic orbital symmetry information, 
can readily be used to determine the irreducible representation in which any given 
molecular orbital (based on an a.o. basis) transforms. If the transformation dis- 
cussed in the preceding paragraph is made, this assignment is, of course, no longer 
required, since the basis members being combined in a MO all belong to the same 
irreducible representation. To classify a given MO, in a special subroutine, the 
equivalence tables are examined separately for each symmetry element concerned. 
First, the ON table is examined. The MO coefficients of each basis member of each 
atom in the ON table are tested. The first coefficient which is nonzero determines 
the behavior, i.e., symmetric or antisymmetric, of the orbital under the element in 

6 That is, greater than an arbitrarily chosen threshhold value. 
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question, depending on the behavior of the a.o. the coefficient represents. Thus, in 
the case of a C,, molecule, if the first nonzero coefficient encountered on the xz- 
plane belongs to a pr orbital, the MO is antisymmetric relative to that plane 
(i.e., transforms as either a2 or bl). If, instead of the pzl coefficient, the coefficient of 
the s or any other p orbital was nonzero, the MO would be symmetric with respect 
to the xz-plane. 

Next, all subsequent entries of the ON table are similarly tested. However, since 
the symmetry of the MO has now been established, the result of the test is merely 
compared with the previous result. If a conflict arises, a special routine is invoked 
which is discussed below. 

After the ON table has been examined in this fashion, the BY table is similarly 
checked. If the coefficient of a given orbital of the first of a pair of atoms is nonzero, 
its value is compared with the value of the corresponding coefficient of the second 
atom. If the two are equal’ or equal and opposite in sign,’ tests will be made whether 
the symmetry behavior agrees with that previously established. If none was pre- 
viously established, the first set of coefficients encountered is used to establish the 
behavior, and all subsequent ones are checked. As an example, take again the 
coefficients of the pzl orbitals of a pair of atoms related by the xz-plane in a C,, 
molecule. If the coefficients are equal,’ the behavior is antisymmetric, if their sum 
is zero,’ the MO is symmetric. 

If the coefficient corresponding to the first of the pair of atoms is zero,6 but the 
second nonzero, the same tests are made. If either coefficient is nonzero,‘j and 
neither the sum nor the difference is nonzero,? or if the result of the determination 
is at variance with a previously determined behavior, the same corrective action 
routine mentioned above is called, cf. below. 

When dealing with point groups in which more than one symmetry element is 
necessary (cf. Tables I and II), the process is repeated separately for each element, 
and the information is then combined into an irreducible representation. The 
process is repeated for each molecular orbital. 

In case the symmetry checking leads to a conflict, the first assumption is that we 
are dealing with a group of accidentally or essentially degenerate orbitals. We then 
call a subroutine which determines whether the orbital under examination is 
degenerate* with the one above or the one below in energy. If this is not the case, an 
error message is printed, and the calculation continues as if the molecule trans- 
forms as C1, or, at the programmer’s option, may be abandoned at this point. 

If we have encountered degenerate orbitals, the subsequent treatment differs 
depending on the point group of the molecule. If the point group has no degenerate 
representations, the degeneracy must be accidental; consequently a linear com- 

’ Again, if the absolute value of the difference, or of the sum, is less than an arbitrary value. 
8 That is, whether the absolute vaIue of the difference of the orbital energies is less than an 

arbitrary predetermined value. 
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bination of the degenerate orbitals can be formed to make the coefficients of the 
orbital conform to the expected symmetry. Once this is done, the symmetry 
checking of the degenerate orbitals is started all over. 

However, if we are dealing with truly degenerate orbitals, transforming in the 
degenerate representations, we have found two alternative procedures. The first 
consists in treating the molecule as if it transformed as the highest nondegenerate 
subgroup of its true point-group. In that case, the above procedure is applicable: 
degenerate orbitals are resolved by linear combinations into pairs of orbitals trans- 
forming as the distinct representations of the nondegenerate subgroups. This 
procedure has been found generally applicable, giving adequate results for closed 
shell systems; only the orbital labeling is now appropriate to the subgroup rather 
than the true point group. A reversal of the procedures used for reducing sym- 
metry, as, say, in the method of descending symmetries [2], can readily be applied 
to obtain the appropriate species symbols for the degenerate species. However, 
when we are dealing with partially occupied degenerate sets of orbitals, this 
procedure is inadequate. 

An alternative procedure is to deal with groups of degenerate orbitals jointly. 
This is achieved by forming the sum of squares of the pairs of orbitals, i.e., in the 
LCAO formalism and subject to the ZDO approximation (as used in CNDO), by 
summing the squares of the coefficients of corresponding AO’s in the set of dege- 
nerate orbitals. This sum of squares always transforms as the totally symmetric 
representation. Groups of orbitals are assigned to e (or t) representations by the 
fact of degeneracy, coupled with the failure of the symmetry checks on the 
individual orbitals. 

The further distinction between various e (or r) species can frequently be made 
by use of binary symmetry elements for which the behavior of all components of a 
degenerate set (and hence any linear combination thereof) is the same. Thus g and u 
species can always be distinguished by examining the behavior of the individual 
orbitals with respect to i, primed and doubly primed species (e.g. e’ and e”) by their 
behavior with respect to uh . Other such classifications depend on the individual 
point groups; thus e, and e2 in C,, or D, are distinguishable by the antisymmetric 
or symmetric behavior, respectively, under Cs3, and e,, , e,, , ez9 , eza of Dab by 
combinations of any two of Ca3, oh and i. However, this resolution is not always 
straightforward, and may have to be programmed separately for many of the less 
common point groups. For the C, groups, e.g., there is no simple test available 
to distinguish between e, and e2 species. 

It is questionable, however, whether the second procedure outlined here has 
much merit over the use of the highest subgroup. For closed shells the results are 
the same by both, although the labeling is improved by the second procedure. For 
open shells, on the other hand, unless a multideterminant function is introduced, 
the SCF scheme breaks up the degeneracy, and nothing is gained. 
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In the manner outlined in this section we are able to classify all molecular orbitals, 
virtual as well as occupied ones, according to the irreducible representation of the 
appropriate point group. 

The Direct Product and Selection Rules 

Since we are principally interested in electronic spectra, we must next form the 
direct product representation of pairs of orbitals to obtain the irreducible represen- 
tation of a configuration. This is readily achieved by use of a direct product table. 
A single table serves for all nondegenerate point groups, cf. Table III. Similar 
tables can be created for the degenerate representations, including the reduction of 
reducible representations arising in the products of degenerate representations. 

The selection rules, which avoid the necessity to make the calculation of oscillator 
strength in the case of forbidden transitions, are contained similarly in small 
tables, which, for each representation in each point group, give a yes-no type 
information. 

TABLE III 

Direct Product Table of Nondegenerate Point Groupsa 

I 

J 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 
2 1 4 3 6 5 8 7 
3 4 1 2 7 8 5 6 
4 3 2 1 8 7 6 5 
5 6 7 8 1 2 3 4 
6 5 8 7 2 1 4 3 
7 8 5 6 3 4 1 2 
8 7 6 5 4 3 2 1 

A A A’ G 42 Al A 4, 
B A” u AU A2 4 A 

& Bl B* B:,” 
&I B2 B2 4” 

B2, 

B 2” 
& 
B 2” 

* Where I and J stand for the irreducible representations of each point group, according to the 
following table. 
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Configuration Interaction 
With the irreducible representation of each configuration directly available, it is 

now easy to make tremendous savings in the calculation of configuration inter- 
action. Since only configurations transforming in the same irreducible representa- 
tion interact, a simple test allows to eliminate much of the calculation (even 50 % 
in the case of only two representations). As the calculation of the CI matrix is often 
the “rate-determining” step in such a calculation, the savings are tremendous. In 
addition, if desired, the CI matrix may be blocked, and diagonalized in symmetry 
blocks. This procedure seems, however, worthwhile only in case of really large 
matrices, since the overhead of handling the separate matrices and recombining 
them at the end cuts deeply into the savings achieved. We use this technique only 
when we wish to diagonalize CI matrices the size of which exceeds the readily 
available storage in the computer. In this case we create blocked matrices, one row 
at a time, and dump these on disk (auxiliary storage). We then retrieve them, one 
matrix at a time, and rewrite the eigenvector matrices on disk, holding the eigen- 
values in separate vectors in core. This greatly simplifies the sorting by energy and 
remerging after all matrices are diagonalized. 

The symmetry of the states resulting from a CI calculation are also readily 
determined, even when the CI matrix is diagonalized as a whole. Since only 
configurations of the same species combine, it suffices to ascertain the species of 
the leading term of any CI expansion, or even of any term having a significant 
coefficient. Since the species of the individual configurations is available, this is of 
course readily accomplished. 

Higher Excited States 
With the irreducible representation of each M.O. available, it has become readily 

possible to define, in symmetry terms, the nature of excited configurations. This 
has led to an open shell program capable of calculating excited states of molecules 
by invoking the Aufbau principle, not for all orbitals at once, but for each irre- 
ducible representation separately [3]. The input to such a program involves a table 
of the number of doubly occupied and singly occupied orbitals in each representa- 
tion, and at each iteration the orbital occupation is determined according to this 
table. This procedure is essential since, as iterations are carried out, one frequently 
encounters crossing of orbitals of different symmetry; consequently, in the absence 
of this type of symmetry constraint, frequently convergence is not obtained. 

APPENDIX 

In this appendix are presented the input data required and the equivalence 
tables generated in a very simple application of the symmetry handling routines 
described in this paper. Formaldehyde (H&=0) is chosen as the example. 
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TABLE Al 

Data Used 

Generated Input 

Order i Coordinates Atomic 
number X Y 2 number 

1 0 0 1.21 8 
2 0 0 0 6 
3 .944 0 -.545 1 
4 -.944 0 -.545 1 

TABLE A2 

Equivalence Tables Generated 

No. of atoms Order no 

*x2 ON Table 4 1 2 3 4 
%z ON Table 2 1 2 - - 

No. of pairs Order no 

UZE BY Table 0 - - - - 

%z BY Table 1 3 4 - - 
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